Gray-Scott model

Reaction diffusion of two chemicals F ("food", left plot) and C ("cell", right plot) following these reactions :

F + 2C --> 3C +R          if 2 cells C find food F, a chemical reaction can turn them into 3 cells C and 1 trash R ("poop")

C --> R'                         a slow reaction turns a cell C into a dead chemical R'

with R and R' residues, "trash" of the reaction, not plotted.

F is constantly provided with a uniform production rate and C slowly die through time if it does not have enough neighbors and food to survive. 

In the code, the evolutions thus look like this, F*(C**2)*dt giving the speed of the first reaction and kdeces*C*dt the speed of the second reaction :

F = F+dt*Df*(laplacian(F,Longueur_phys)) - F*(C**2)*dt + dt*fapport*(1-F)
C = C+dt*Dc*(laplacian(C,Longueur_phys)) + F*(C**2)*dt - kdeces*C*dt

 

For more info, see Gray Scott model 




Début de la vidéo
Cochez la case pour indiquer le début de lecture souhaité.

Table des scores

Cliquez ci-dessous pour actualiser les informations.